
USB in Depth
Session 116

USB in Depth

Craig Keithley
USB and FireWire Technology Evangelist

Introduction
•Discuss USB implementation issues
facing developers

•Share tools and techniques that are
helpful with creating USB drivers

USB in Depth

Rhoads Hollowell
USB Software Team

What You Will Learn
•USB documentation available
•Open Source and the IOUSBFamily
•IOService termination
•Code-less kernel extensions
•Dealing with kIOExclusiveAccess errors
•USB Prober for Mac OS X!
•Debugging techniques for USB drivers

Documentation

•Start with Darwin documentation
http://developer.apple.com/techpubs/macosx/Darwin/
kernel.html

•IO Kit fundamentals can be found at
http://developer.apple.com/techpubs/macosx/Darwin/
IOKit/IOKitFundamentals

•Working With USB Device Interfaces
http://developer.apple.com/techpubs/macosx/Darwin/
IOKit/DeviceInterfaces/USBBook

•USB Technology Home Page
http://developer.apple.com/hardware/usb/index.html

USB

USB

More Documentation

•Technical Q&As
• Tips on USB driver matching for Mac OS X
http://developer.apple.com/qa/qa2001/qa1076.html

• Making sense of IO Kit error codes
http://developer.apple.com/qa/qa2001/qa1075.html

• Issues with boot time KEXT loading
http://developer.apple.com/qa/qa2001/qa1087.html

Darwin and IOUSBFamily
•Darwin provides Open Source access
to parts of the Mac OS X

•CVS module is IOUSBFamily (live!)
•Tags identify releases of module

• IOUSBFamily-5Q125 used in build
5Q125 of Mac OS X 10.1.4

• IOUSBFamily-6C35 used in current
Jaguar build

Demo
Fernando Urbina
USB Software Team

Darwin Repository

Darwin and IOUSBFamily (Cont.)
•Use majordomo to get notices of checkins!

• Send email to
majordomo@opensource.apple.com

• Body should include
subscribe cvs-log-iousbfamily

•Use usb@lists.apple.com for questions
•
• Search archive first
• Always respond to entire list

http://lists.apple.com

IO Kit Convention for
Apple Supplied Driver
•IOxxx (e.g., IOUSBHIDDriver)

• May be subclassed
•Applexxx (e.g., AppleUSBKeyboard)

• Not intended to be subclassed
• Not guaranteed to be binary compatible
• Can borrow source for your own driver

IO Kit Termination Sequence
•Used when a device is unplugged
•Affects both Device and Interface drivers
•Method Declarations

willTerminate (IOService *provider,
IOOptionBits options)

didTerminate(IOService *provider,
IOOptionsBits options, bool *defer)

•No longer use kIOServiceMessageIsTerminated

IO Kit Termination
Sequence (Cont.)
• willTerminate()

• Driver isInactive() == true
• Need to cancel or abort any outstanding
I/O calls to provider

IO Kit Termination
Sequence (Cont.)
• didTerminate()

• Termination is almost complete
• If all outstanding I/O is done, close
the provider

• If not, leave provider open and close
it after the last I/O completes

Code-less Kernel Extensions
•You can have a kernel extension that only
provides a personality

• Add property to device nub
• Provide vendor-specific driver so that
class driver does not match to it

• Use another driver as the binary
•Use Project Builder but have no code

Code-less Kernel Extensions
Example #1
•Want HID device available only to Classic
•Need a vendor-specific kext to match to device
so IOUSBHIDDriver will not load for it

•Need to add “ClassicMustSeize” boolean
property to device nub

Code-less Kernel Extensions
Example #1 (Cont.)

Code-less Kernel Extensions
Example #2
•Have a vendor-specific device
•Need to create interfaces for it
•Create a vendor-specific code-less kext that
uses the AppleUSBComposite driver

• Calls SetConfiguraton() which creates
the interfaces

• Handles reconfiguration after reset

Code-less Kernel Extensions
Example #2 (Cont.)

Using USBLog() in Your KEXT
•Use instead of IOLog()
•Same printf style formatting
•Uses levels 1–7 to filter messages
•Sends a message to kernel logging KEXT

• KLog.kext in SDK
• Works if it is not there

•User space application gets that message
and displays it (USB Prober)

Using USBLog() in
Your KEXT (Cont.)
•Large buffer means no missed messages
define DEBUG_LEVEL 3

include <IOKit/usb/IOUSBLog.h>

• #define DEBUG_LEVEL (0-3) in your KEXT
• DEBUG_LEVEL of 0 causes USB Log to be stripped

•Sample usage
USBLog(3,"%s[%p]: USB Generic Composite @ %d",

getName(), this, _device->GetAddress());

USB in Depth

Fernando Urbina
USB Software Team

Notifications of USB Plug
and Unplug in User Space
•Need to know when devices come and go
•Need to distinguish between identical devices
•Look at DTS Sample at

•Shows how to include per device data in
termination notifications

http://developer.apple.com/samplecode/
Sample_Code/Devices_and_Hardware/
USB/USBPrivateDataSample.htm

Dealing With Exclusive
Access Errors
•User space applications need to open device
or interface interfaces

•Used to arbitrate access to the USB Device
or USB Interface

•Might get a kIOReturnExclusiveAccess error
(0xe00002c5)

•Some other object has the device or interface open
• Could be another KEXT
• Could be another user client

Dealing With Exclusive
Access Errors (Cont.)
•Use USB Prober to determine who has it open
•Look at IOService Plane

• A kernel extension
 Apple Optical USB Mouse@2122000

AppleUSBComposite

IOUSBInterface@0

AppleUSBOpticalMouse

IOUSBUserClientInit

• A user client (probably Classic)
 SNAPSCAN 1212U@2113000

IOUSBUserClientInit

IOUSBDeviceUserClient

Dealing With Exclusive
Access Errors (Cont.)
•If a kernel extension (probably a class driver)

• Vendor-specific code-less KEXT
• Will match to device and return true
from start method

•If Classic has it open
• Code-less KEXT that has “ClassicMustNotSeize”
• Better: Use USBDeviceOpenSeize() or
USBInterfaceOpenSeize()

New Tools
•Jaguar KEXT tools

• kextload does everything
•Logging KEXT (KLog.kext)

• Found in USB SDK 1.8.7
• Needed for USBLog() to work

•USB Prober
• Just like old times, but better

Nima Parivar
USB Software Team

Demo
USB Prober

USB Prober
•Available now

•Written in Cocoa
• Prints
• Cut and Paste

•Open-sourced (soon!)

ftp://ftp.apple.com/developer/Tool_Chest/

Testing_-_Debugging/Hardware_tool

KEXT Debugging Overview
•Two types of debugging

• After the fact decoding of a panic
• Active debugging (2-machine)

•In both cases, you need symbols
• Build KEXT with symbols
• Use kextload to generate symbol file

• Locally or on another machine
• Use addresses from panic message

Generating Symbols
•Build with symbols:

•Results placed in build directory
and in install directory

•Use kextload to generate symbols
• If KEXT is already running
% sudo kextload -s /var/tmp -A Your.kext

• If KEXT is not running (asks for addresses)
% sudo kextload -n -s /var/tmp Your.kext

% pbxbuild install COPY_PHASE_STRIP=NO STRIP_INSTALLED_PRODUCT=NO
INSTALLED_PRODUCT_ASIDES=YES STRIP=/usr/bin/true

Panic Information
•New UI does not show panic addresses

• Saved at /Library/Logs/panic.log
•If you want “old” style panic screen

•
•Use addresses from module dependencies
to generate symbols offline

•Use addresses from backtrace to find culprit!

sudo nvram boot-args=“debug=0x104”

Use gdb to Debug Your KEXT
•If machine is not available

• Generate symbol file
•
•

•If machine is available use 2-machine debugging
• Look at “Hello Debugger (Debugging a device
driver with GDB)” tutorial in developer site

gdb > add-symbol-file yourKext.sym

gdb > l *0x12345678

KEXT Debugging

Demo

Resources
USB Implementers Forum
http://www.usb.org

Mac OS X Developer Information
http://developer.apple.com/macosx/

Macintosh USB Development Information
http://developer.apple.com/hardware/usb/

Roadmap
Civic

Wed., 10:30am
Civic

Wed., 10:30am

108 Managing Kernel Extensions:
Using IO Kit KEXTs in Mac OS X

Room C
Fri., 2:00pm
Room C

Fri., 2:00pm

515 Image Capture Framework:
Image Capture Framework

Room C
Wed., 2:00pm

Room C
Wed., 2:00pm

808 Managing I/O: CFRunLoop
and CFStream:
Using CFRunLoop in Applications

Room J1
Fri., 9:00am
Room J1

Fri., 9:00am

FF009 FireWire and USB:
Tell us what you think

Who to Contact
Worldwide Developer Relations
Craig Keithley
USB and FireWire Technology Evangelist
keithley@apple.com

USB Developer Mailing List
usb@lists.apple.com

http://developer.apple.com/wwdc2002/urls.html

Q&A

Craig Keithley
 USB and FireWire Technology Evangelist

keithley@apple.com

http://developer.apple.com/wwdc2002/urls.html

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

